Howdy, Stranger!

It looks like you're new here. Sign in or register to get started.

Welcome to the Hardcore Husky Forums. Folks who are well-known in Cyberland and not that dumb.

Some more inconvenient truth

WestlinnDuckWestlinnDuck Member Posts: 15,326 Standard Supporter
If we had a society that valued actual education, every high school senior would be aware of the basic facts in this article. But leftards don't like facts and prefer that we power the country with unicorn farts. The article doesn't talk about nuclear, but until we get inexpensive fusion, then nuclear and petroleum based energy will be required to provide the base load for when the sun doesn't shine and the wind doesn't blow. The talk of 100% renewable power is just a fantasy, and yet almost every dem politician is promoting this.

It costs less than $1 a barrel to store oil or natural gas (in oil-energy equivalent terms) for a couple of months.[20] Storing coal is even cheaper. Thus, unsurprisingly, the U.S., on average, has about one to two months’ worth of national demand in storage for each kind of hydrocarbon at any given time.[21]

Meanwhile, with batteries, it costs roughly $200 to store the energy equivalent to one barrel of oil.[22] Thus, instead of months, barely two hours of national electricity demand can be stored in the combined total of all the utility-scale batteries on the grid plus all the batteries in the 1 million electric cars that exist today in America.[23]

https://www.manhattan-institute.org/green-energy-revolution-near-impossible


EXECUTIVE SUMMARY
A movement has been growing for decades to replace hydrocarbons, which collectively supply 84% of the world’s energy. It began with the fear that we were running out of oil. That fear has since migrated to the belief that, because of climate change and other environmental concerns, society can no longer tolerate burning oil, natural gas, and coal—all of which have turned out to be abundant.

So far, wind, solar, and batteries—the favored alternatives to hydrocarbons—provide about 2% of the world’s energy and 3% of America’s. Nonetheless, a bold new claim has gained popularity: that we’re on the cusp of a tech-driven energy revolution that not only can, but inevitably will, rapidly replace all hydrocarbons.

This “new energy economy” rests on the belief—a centerpiece of the Green New Deal and other similar proposals both here and in Europe—that the technologies of wind and solar power and battery storage are undergoing the kind of disruption experienced in computing and communications, dramatically lowering costs and increasing efficiency. But this core analogy glosses over profound differences, grounded in physics, between systems that produce energy and those that produce information.

In the world of people, cars, planes, and factories, increases in consumption, speed, or carrying capacity cause hardware to expand, not shrink. The energy needed to move a ton of people, heat a ton of steel or silicon, or grow a ton of food is determined by properties of nature whose boundaries are set by laws of gravity, inertia, friction, mass, and thermodynamics—not clever software.

This paper highlights the physics of energy to illustrate why there is no possibility that the world is undergoing—or can undergo—a near-term transition to a “new energy economy.”

Among the reasons:

Scientists have yet to discover, and entrepreneurs have yet to invent, anything as remarkable as hydrocarbons in terms of the combination of low-cost, high-energy density, stability, safety, and portability. In practical terms, this means that spending $1 million on utility-scale wind turbines, or solar panels will each, over 30 years of operation, produce about 50 million kilowatt-hours (kWh)—while an equivalent $1 million spent on a shale rig produces enough natural gas over 30 years to generate over 300 million kWh.
Solar technologies have improved greatly and will continue to become cheaper and more efficient. But the era of 10-fold gains is over. The physics boundary for silicon photovoltaic (PV) cells, the Shockley-Queisser Limit, is a maximum conversion of 34% of photons into electrons; the best commercial PV technology today exceeds 26%.
Wind power technology has also improved greatly, but here, too, no 10-fold gains are left. The physics boundary for a wind turbine, the Betz Limit, is a maximum capture of 60% of kinetic energy in moving air; commercial turbines today exceed 40%.
The annual output of Tesla’s Gigafactory, the world’s largest battery factory, could store three minutes’ worth of annual U.S. electricity demand. It would require 1,000 years of production to make enough batteries for two days’ worth of U.S. electricity demand. Meanwhile, 50–100 pounds of materials are mined, moved, and processed for every pound of battery produced.

To be sure, history shows that grand energy transitions are possible. The key question today is whether the world is on the cusp of another.

The short answer is no. There are two core flaws with the thesis that the world can soon abandon hydrocarbons. The first: physics realities do not allow energy domains to undergo the kind of revolutionary change experienced on the digital frontiers. The second: no fundamentally new energy technology has been discovered or invented in nearly a century—certainly, nothing analogous to the invention of the transistor or the Internet.

Before these flaws are explained, it is best to understand the contours of today’s hydrocarbon-based energy economy and why replacing it would be a monumental, if not an impossible, undertaking.

entire line would increase in height by one Washington Monument every week.

To completely replace hydrocarbons over the next 20 years, global renewable energy production would have to increase by at least 90-fold.[6] For context: it took a half-century for global oil and gas production to expand by 10-fold.[7] It is a fantasy to think, costs aside, that any new form of energy infrastructure could now expand nine times more than that in under half the time.

If the initial goal were more modest—say, to replace hydrocarbons only in the U.S. and only those used in electricity generation—the project would require an industrial effort greater than a World War II–level of mobilization.[8] A transition to 100% non-hydrocarbon electricity by 2050 would require a U.S. grid construction program 14-fold bigger than the grid build-out rate that has taken place over the past half-century.[9] Then, to finish the transformation, this Promethean effort would need to be more than doubled to tackle nonelectric sectors, where 70% of U.S. hydrocarbons are consumed. And all that would affect a mere 16% of world energy use, America’s share.

This daunting challenge elicits a common response: “If we can put a man on the moon, surely we can [fill in the blank with any aspirational goal].” But transforming the energy economy is not like putting a few people on the moon a few times. It is like putting all of humanity on the moon—permanently.

Comments

Sign In or Register to comment.